

2.3 Incidence Axioms for Geometry

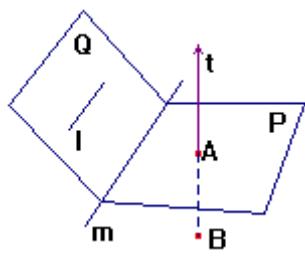
We introduce the idea of a finite geometry as a finite system satisfying the axioms of incidence. This is a way to create models for the axioms in order to assure consistency. We use diagrams that are mere representations of abstract systems, thus lines $\{A, B, C\} \cap \{D, E, F\} = \emptyset$, while $l_3 \cap l_4 = \{Q, R\}$.

Clearly we could also have used Venn diagrams.

Remarks. 1. These axioms are an adaptation of Hilbert's axioms, to establish how points, lines, and planes interact.
 2. To facilitate the statement & use of this axioms we use

basic set theory notation $x \in S$, $A \subseteq T$, $A \cup B$,
 $A \cap B$, $S =$ Universal set (all points in space)
 3. Undefined terms: point, line, plane, and space.

Notation:



$l \subset Q$	" l lies on Q "
$t \cap P = \{A\}$	" t meets P "
$l \parallel P$	" l is parallel to P "
$P \cap Q = m$	" P meets Q in m "
$l \cap m = \emptyset$	
$\{A\} \& \{B\}$ are collinear	

Axiom I-1: Each two distinct points P & Q determine a line \overleftrightarrow{PQ} .

Hence $P, Q \in \overleftrightarrow{PQ}$, $\{P, Q\} \subset \overleftrightarrow{PQ}$

This axiom can be restated as follows:

Theorem 1. If $C \in \overleftrightarrow{AB}$, $D \in \overleftrightarrow{AB}$ and $C \neq D$, then $\overleftrightarrow{CD} = \overleftrightarrow{AB}$

Axiom I-2: Three noncollinear points determine a plane

Ex. a) Tripod. b) A 3-legged table
(always stable over a plane).

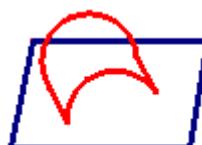
Axiom I-3:

If two points lie in a plane, then any line determined by those two points lies in that plane.

That is, lines are straight.

Axiom I-4: If two planes meet, their intersection is a line

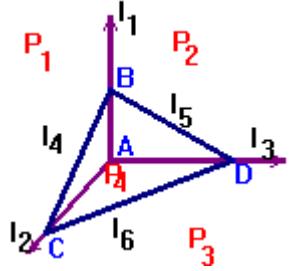
Planes are flat



Axiom I-5:

Space consists of at least 4 non coplanar points, and contains 3 noncollinear points. Each plane contains at least 3 noncollinear points, and each line contains at least 2 distinct points

Model for Axioms I.1-I.5:



(With only the 4 points guaranteed by Ax. I.5) Explore whether the axioms hold in the given figure. List all possible lines and planes in this geometry, and test if each axiom is satisfied. Can you generalize?

Solution. 1. Lines: $l_1 = \{A, B\}$, $l_2 = \{A, C\}$, $l_3 = \{A, D\}$, $l_4 = \{B, C\}$, $l_5 = \{B, D\}$, $l_6 = \{C, D\}$. $\binom{4}{2} = 6$ possible lines \Rightarrow Axiom I-1 holds.

2. Planes: $P_1 = \{A, B, C\}$, $P_2 = \{A, B, D\}$, $P_3 = \{A, C, D\}$, $P_4 = \{B, C, D\}$. $\binom{4}{3} = 4$ possible planes \Rightarrow Axiom I-2 holds.

3. Pairs of points:

$$l_1, l_2, l_4 \in P_1; l_1, l_3, l_5 \in P_2 \text{ hence Axiom I-3}$$

$$l_2, l_3, l_6 \in P_3; l_4, l_5, l_6 \in P_4 \text{ holds}$$

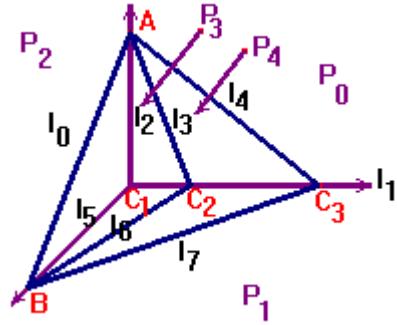
4. $P_1 \cap P_2 = l_1$; $P_1 \cap P_3 = l_2$; $P_1 \cap P_4 = l_4$; $P_2 \cap P_3 = l_3$; $P_2 \cap P_4 = l_5$; $P_3 \cap P_4 = l_6$, \Rightarrow Axiom I-4 holds.

5. Axiom I-5 holds.

6. Let the n points be $A, B, C_1, \dots, C_{n-2}$. For $k = 1, 2, \dots, n$ take $l_0 = \{A, B\}$, $l_1 = \{C_1, C_2, \dots, C_n\}$, $l_{k+1} = \{A, C_k\}$, $l_{n+k+1} = \{B, C_k\}$, $P_0 = l_1 \cup \{A\}$, $P_1 = l_1 \cup \{B\}$, and $P_{k+1} = \{A, B, C_k\}$.

Example for A, B, C_1, C_2, C_3 :

$$\begin{aligned}
 l_0 &= \{A, B\}, l_1 = \{C_1, C_2, C_3\}, \\
 l_2 &= \{A, C_1\}, l_3 = \{A, C_2\}, \\
 l_4 &= \{A, C_3\}, l_5 = \{B, C_1\}, \\
 l_6 &= \{B, C_2\}, l_7 = \{B, C_3\} \\
 P_0 &= l_1 \cup \{A\}, P_1 = l_1 \cup \{B\}, \\
 P_2 &= \{A, B, C_1\}, P_3 = \{A, B, C_2\}, \\
 P_4 &= \{A, B, C_3\}.
 \end{aligned}$$



Ex. Prove explicitly from the incidence axioms that i) a plane cannot be a line, & ii) each line is contained by at least two planes whose intersection is that line.

Sol. i) By axiom I-5, each plane contains at least 3 non collinear points, this would contradict that a plane is a line.

ii) CONCLUSIONS

(1) Let \overleftrightarrow{AB} be a line

JUSTIFICATIONS

Given

(2) Let C be a point not on \overleftrightarrow{AB}

Axiom I-5

(3) Let P be the plane determined by A, B, & C

Axiom I-2

(4) Let D $\notin P$

Axiom I-5

(5) Let P' be the plane determined by A, B, & D

Axiom I-2

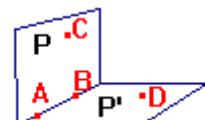
(6) $A, B \in P \cap P'$

(3) & (5)

(7) $\overleftrightarrow{AB} = P \cap P'$

Axioms I-4 & I-1

$\therefore \overleftrightarrow{AB}$ is contained in at least two planes



Theorem 2.

- i) If two distinct lines l and m meet, their intersection is a single point.
- ii) If a line meets a plane and is not contained by that plane, their intersection is a point.

Proof

I. Given: Distinct lines l and m , point A on $l \cap m$.

Prove: No other point, besides A , lies in $l \cap m$.

CONCLUSIONS

- (1) Assume false. Assume pt. $B \neq A$ lies on both l and m .
- (2) A and B belong to both l and m
- (3) $l = m \rightarrow \leftarrow$
- (4) $\therefore A$ is the only point on both l and m

JUSTIFICATIONS

- assumption for indirect proof
- given and Step (1)
- Axiom I-1
- Rule of Elimination

II. Given: Line l not lying in plane P , $A \in l \cap P$.

Prove: No other point, besides A , lies in $l \cap P$.

CONCLUSIONS

- (1) Assume false, i.e., $B \neq A \wedge B \in l \cap P$
- (2) $l = \overleftrightarrow{AB}$
- (3) $l \subseteq P \rightarrow \leftarrow$
- (4) $\therefore A$ is the only point on both l & P

JUSTIFICATIONS

- Assump. for Ind. proof
- Hyp. & Thm. 1
- Ax I-3